A new approach in classical Klein-Gordon cosmology

Eleni-Alexandra Kontou
Common trends in non-Hermitian Physics
26 March 2025

ING'S
College
LONDON



Introduction and motivation The model Early and late time behavior
0000 000000000 000000
:
Outline

Conclusions
[e]e]

Introduction and motivation

The model

Early and late time behavior

Conclusions

Based on: 2408.16549
Work with Nicolai Rothe

DA 503




e
Introduction and motivation The model Early and late time behavior Conclusions
@000 000000000 000000 [e]e]

:
:

Introduction and motivation

DA 3




Introduction and motivation The model Early and late time behavior Conclusions
0000 000000000 000000 [e]e]
|
|
Why are we interested in classical fields?
The semiclassical Einstein equation

Guv + Nguw = K(T}0)e -
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Why are we interested in classical fields?

The semiclassical Einstein equation

Guv + Nguw = K(Eﬁ:‘)w .
Derivations of solutions:

» Cosmological spacetimes [Gottschalk, Siemssen, 2018] [Meda, Pinamonti, Siemssen, 2020]
> Einstein’s static universe [Sanders, 2021]

» Black hole spacetimes: no solutions, progress on the renormalization of the quantized
stress-energy tensor [Taylor, Breen, Ottewill, 2021] (and others...)
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In the moment approach [Gottschalk, Siemssen, 2018]

(Th' e =

(Tul/)m + <T/w>w§eg +0©

Had
w4 O + 015 (c)
function
> o2, 05,

> <T,“,)w1, (Tuy)w;eg: contributions of the one-point function and of the regularized two-point

©),,'(c): contributions of the Hadamard condition on the two-point function, of the
trace anomaly and of the renormalization freedom, respectively.
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» The contributions of the one-point functions can be modelled as a classical Klein-Gordon field
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» A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from
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Why are we interested in classical fields?
» The contributions of the one-point functions can be modelled as a classical Klein-Gordon field
» A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from
the literature
» A rich parameter space with different kinds of solutions
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Why are we interested in classical fields?

» The contributions of the one-point functions can be modelled as a classical Klein-Gordon field

» A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from
the literature

» A rich parameter space with different kinds of solutions

How do these solutions affect the full semiclassical system?
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FLRW spacetimes
2 2
|g:—dt+dﬂgm
The Ricci scalar

. .2
Rp]:6<f+a
a
The Hubble parameter and the decceleration parameter

2)

20 glal: >R, t—

Hla]l: I =R, t—
Any matter that solves the Einstein equation in FLRW spacetimes and -type solutions

a(t)

_a(t)a(e)
a(t)?
(T",) = diag(—o0, p, P, P) s

Mal=~:= P

1%
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FLRW spacetimes
2 2
|g = —dt” + a(t)"grs
The Ricci scalar

2)

gla]: I =R, t—

. .2
R[a] =6 <3 +2
a
The Hubble parameter and the decceleration parameter

Hla]: e =R, tes 28 UL
a(t) a(t)?
Any matter that solves the Einstein equation in FLRW spacetimes and -type solutions
(T%,) = diag(—o,p,p,p),  Tla]=7:= ’—;
~v = —1: Dark Energy, v = 0: matter domination, v = % radiation domination
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FLRW spacetimes

2 2
|g = —dt” + a(t)"grs
The Ricci scalar

. .2
a a
R[a]=6| -+ =
al=6(2+%)
The Hubble parameter and the decceleration parameter
a(t) B a(r)a(t)
H[a]: I =R, t— —= =R, t— ———
[a] t ) a(t) ’ q[a] t ) a-(t)z
Any matter that solves the Einstein equation in FLRW spacetimes and -type solutions
(T‘LV) = dla‘g(_gv PP, P) ’

p

Ma]=~v:==

[o] =v:=7

~v = —1: Dark Energy, v = 0: matter domination, v = %: radiation domination
From [PLANCK, 2018]

Quag = 5.38-10°, Qquse = 0315, Qo

0.685 and Hp 25%19',10_18—:5_1
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The classical Klein-Gordon field
The action integral

m > 0: the mass of the field, £ € R: a dimensionless coupling constant, . =
&mc = 0: minimal coupling

Sc =3 [ dxVTE( ~ (Vo) (T"6) + ERE™ 4 mie?)

1. :
5: conformal coupling,

o F = DA q5/23
!
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1

Siw =3 [ X8~ (Tuo)(T"9) + ERE* + m's?),
m > 0: the mass of the field, £ € R: a dimensionless coupling constant, £ =
&mc = 0: minimal coupling

The Klein-Gordon equation

1.
&
The stress-energy tensor

conformal coupling,
(—v"va P+ gR) =0
Tuv

Its trace

= (1-26)(Vud)(Voo) — 5(1 — 4€)guv (V7 9) (Vo d) — 580 m*d?
+£(Guv®® — 20V, Vo + 28,3V Vo d) .

T'. = (6§ = 1)((V"8)(Vud) + V" Vo) — m*6?
T", = 0 only for a massless, conformally coupled field

[m]
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Three equations:

Goo + Agoo = Kk Too Energy equation
—R+4N=kT", Trace equation
(-V°Vo+m*+£R) ¢ =0

Field equation
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0=¢% + 12626 + m*¢? + 66567 — 6 % + 2\
Energy equation
0=6(1+¢(6¢ — 1)6%) (2+5) = 4A+ (1 - 66)d2 + (6¢ — 2) 6"
Trace equation
0=4+32p+mpree(i+5)0

Field equation
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Setup of cosmological solutions
Trace and field equation:
5 s L2 4N + (2 — 66)mP$? + (66 — 1)¢?
a 6 1+¢&(68 —1)¢?
$ = 32

oo (M e’ da )7
a

1+¢(66 —1)¢? )
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Trace and field equation:

. 3 a(4/\+(2—6g)m2¢2+(6g—1)¢2
a = —;-’rg

1+ £(66 - 1)0?
5 = -32

S (4/\5 + m? + mPg? + £(6¢ — 1)¢'>2>
a 14 £(66 —1)¢?
Critical value of ¢
1+ £(6¢ — 1)¢%u(€) = 0
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Framework of constraints
-2
- a
a = ——

q'; _

a (4/\ + (2 69)m¢? + (66 — 1)¢?
a 6

1+£(6€ - 1)¢? >

3204 (4/\5 +m’ 4 mPeg” + £(66 1)462)
a 1+ &(68 — 1)¢?

Two second order ODEs, four initial conditions: a(0), a(0), #(0) and ¢(0)

o F = DA q3/03
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q'; _

a (4/\ +(2—6)m’¢” + (66 — 1)¢°
a 6

1+¢(66 —1)¢? >
3204 (4/\5 +m’ 4 mPeg” + £(66 1)462)
a 1+ &(68 — 1)¢?
Two second order ODEs, four initial conditions: a(0), a(0), #(0) and ¢(0)
a(0) =1 (by convention), a(0) = Ho (observations)

o F = DA q3/03
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Framework of constraints
5 oo 3 a(ME2-69m’e’ + (66— 1)’
a 6 1+ £(6¢ —1)¢?
i = _3% s <4/\§ + m? + mPE¢? + £(66 — 1)432)
- a 1+ £(6€ —1)¢?

Two second order ODEs, four initial conditions: a(0), a(0), #(0) and ¢(0)
a(0) =1 (by convention), a(0) = Ho (observations)

Problem

We don't know the initial values for ¢(0) and ¢(0).
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Framework of constraints
5 oo 3 a(ME2-69m’e’ + (66— 1)’
a 6 1+ £(6¢ —1)¢?
i = _3% s <4/\5 + m? + mPE¢? + £(66 — 1)452)
- a 1+ £(6€ —1)¢?

Two second order ODEs, four initial conditions: a(0), a(0), #(0) and ¢(0)
a(0) =1 (by convention), a(0) = Ho (observations)

Problem _
We don't know the initial values for ¢(0) and ¢(0).

Idea

Use the energy equation as one constraint and the value of go = —4(0)/4(0)? as another. We have
gnebm = —0.538.
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For 0 < £ < 1/6: ellipse

We consider solutions to the energy equation which are conic sections in (¢, é, H): 0= f(¢, é, H)
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We consider solutions to the energy equation which are conic sections in (¢, é, H): 0= f(¢, é, H)

r8
40 |-
H
3
F0
20 |- B
2
-
—Oerit —24/3 0 P 2V3  Perit

-8

-8

_¢crit(§)
A=m=1land £ =1/12
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Parameter space (A, m, £) with a fixed qo:

1. No solutions (no real values of ¢(0) and $(0))
2. Two solutions (one cosmology)

3. Four solutions (two inequivalent cosmologies)
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Parameter space (A, m, £) with a fixed qo:
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1. No solutions (no real values of ¢(0) and $(0))
2. Two solutions (one cosmology)

102

10!

m

3. Four solutions (two inequivalent cosmologies)

1K
1071

1072

o=

4
A =0, go = gacom

107!

.

m =0, qo = gacpm
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a(t) =0, a(t) = o
ast — t°.

Let M = (t°, T) x R® be a flat FLRW spacetime defined by the scale factor a : (t°, T) — (0, c0) and
let ¥ € R. M is said to have a y-type Big Bang singularity at t = t° if
and

Mal() =~
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Types of singularities

Big Bang singularity
Let M = (t°, T) x R® be a flat FLRW spacetime defined by the scale factor a : (t°, T) — (0, c0) and
let ¥ € R. M is said to have a y-type Big Bang singularity at t = t° if
a(t) =0, a(t) = o and Mal(t) =~
as t — t°.
Small Bang singularity

Let M = (5, T) x R® be a flat FLRW spacetime defined by the scale factor a : (t°, T) — (asg, 00). M
is said to have a Small Bang singularity in t = t° if

a(t) — ass and a(t) = oo

as t — oo, for some asg > 0.
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~-type solutions
For £ > 1/6: a(t) — 0 and I[a](t) — v as t — t°.
Three types of early time behavior:

> Type |: The pure radiation expansion (Big Bang singularity)
» Type Il: The y-type Big Bang singularity

» Type lll: The scale factor asymptotically approaches zero.

o F = DA 1g/03
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~-type solutions
For £ > 1/6: a(t) — 0 and I[a](t) — v as t — t°.
Three types of early time behavior:
> Type |: The pure radiation expansion (Big Bang singularity)
» Type Il: The y-type Big Bang singularity
» Type lll: The scale factor asymptotically approaches zero.

a(t) a(t)
1 1
0 0
. ‘
Slalaly Salal) {
-5 0 t 5 -5 6 t 5

Type 11l
/\:m:0,§:%andqo:0.9

=] F
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o F = DA 19703
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Inflation

Definition
When a — 0 we have g[a] — —1
R T

1, _

» Distinguished value of £ = 3/16

> Inflationary period without other assumptions
(e.g. slow roll conditions)

» Further numerical study of this period to
determine if it lasts long enough to solve the
cosmological problems or generate density
fluctuations
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Small Bang solutions
Small Bang solutions are generic for 0 < ¢ < 1/6
O ag) (€,q0) Of e (&)
\o» . /
% .2 % /\\\
S 2 ?0 QI NdN ) w mm
s g @ / 2(sS o g o0s6C;
[ 0.576
o1 e
0 1 0 1
4 ¢ 4 @
0 alg (€, 0) 0 ali) (€, q0)
% %
Bl 1
0 i, 1 _ _
13 6 I3 6 = = A
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Late times evolution

Numerical evidence
For all solutions with £ > 0 and A > 0 we observed a de Sitter late-time expansion with g[a](t) — —1
and H[a](t) = Hwac(A) as t — oo

2 T
| Hla](t)in 1

10—17

I~
—~
~
=
T[T

/
[

Hyae(A)
10718 :

| A

0
—10® —5.-10'7 ) 0 —10® —5.-10'7 ) 0
tins tins

u]
@
I
n
it
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» We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and
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Conclusions

» We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and
coupling to curvature

» In a new approach to classical cosmology we showed the allowed range of parameters to have real
solutions
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coupling to curvature

» We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and
solutions

» In a new approach to classical cosmology we showed the allowed range of parameters to have real
values of the coupling constant

> At early times we observed Big Bangs, Small Bangs and an early inflationary period for different
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Conclusions
>

We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and
coupling to curvature

In a new approach to classical cosmology we showed the allowed range of parameters to have real
solutions

At early times we observed Big Bangs, Small Bangs and an early inflationary period for different
values of the coupling constant

At late times all solutions with positive cosmological constant approach a de Sitter universe
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