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Why are we interested in classical fields?

The semiclassical Einstein equation

Gµν + Λgµν = κ⟨T ren
µν ⟩ω .

Derivations of solutions:

▶ Cosmological spacetimes [Gottschalk, Siemssen, 2018] [Meda, Pinamonti, Siemssen, 2020]

▶ Einstein’s static universe [Sanders, 2021]

▶ Black hole spacetimes: no solutions, progress on the renormalization of the quantized
stress-energy tensor [Taylor, Breen, Ottewill, 2021] (and others...)
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Why are we interested in classical fields?

In the moment approach [Gottschalk, Siemssen, 2018]

⟨T ren
µν ⟩ω = ⟨Tµν⟩ω1 + ⟨Tµν⟩ωreg

2
+ΘHad

µν +Θta
µν +Θren

µν (c)

▶
〈
Tµν⟩ω1 ,

〈
Tµν⟩ωreg

2
: contributions of the one-point function and of the regularized two-point

function

▶ ΘHad
µν , Θta

µν , Θ
ren
µν (c): contributions of the Hadamard condition on the two-point function, of the

trace anomaly and of the renormalization freedom, respectively.
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Why are we interested in classical fields?

▶ The contributions of the one-point functions can be modelled as a classical Klein-Gordon field

▶ A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from
the literature

▶ A rich parameter space with different kinds of solutions

How do these solutions affect the full semiclassical system?

...
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FLRW spacetimes

g := −dt2 + a(t)2gR3

The Ricci scalar

R[ a ] = 6

(
ä

a
+

ȧ2

a2

)
The Hubble parameter and the decceleration parameter

H[ a ] : It → R, t 7→ ȧ(t)

a(t)
, q[ a ] : It → R, t 7→ −a(t)ä(t)

ȧ(t)2

Any matter that solves the Einstein equation in FLRW spacetimes and γ-type solutions

(Tµ
ν) = diag(−ϱ, p, p, p) , Γ[a] = γ :=

p

ϱ

γ = −1: Dark Energy, γ = 0: matter domination, γ = 1
3
: radiation domination

From [PLANCK, 2018]

Ωrad = 5.38 · 10−5 , Ωdust = 0.315 , ΩDE = 0.685 and H0 = 2.19 · 10−18 s−1

...
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ȧ(t)2

Any matter that solves the Einstein equation in FLRW spacetimes and γ-type solutions

(Tµ
ν) = diag(−ϱ, p, p, p) , Γ[a] = γ :=

p

ϱ

γ = −1: Dark Energy, γ = 0: matter domination, γ = 1
3
: radiation domination

From [PLANCK, 2018]

Ωrad = 5.38 · 10−5 , Ωdust = 0.315 , ΩDE = 0.685 and H0 = 2.19 · 10−18 s−1

...



8/23

Introduction and motivation The model Early and late time behavior Conclusions

FLRW spacetimes

g := −dt2 + a(t)2gR3

The Ricci scalar

R[ a ] = 6

(
ä
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Constant EOS and the ΛCDM model
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t in 1017 s
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The classical Klein-Gordon field
The action integral

SKG =
1

2

∫
d4x

√
−g

(
− (∇µϕ)(∇µϕ) + ξRϕ2 +m2ϕ2

)
,

m ≥ 0: the mass of the field, ξ ∈ R: a dimensionless coupling constant, ξcc =
1
6
: conformal coupling,

ξmc = 0: minimal coupling

The Klein-Gordon equation (
−∇σ∇σ +m2 + ξR

)
ϕ = 0

The stress-energy tensor

Tµν = (1− 2ξ)(∇µϕ)(∇νϕ)− 1
2
(1− 4ξ)gµν(∇σϕ)(∇σϕ)− 1

2
gµνm

2ϕ2

+ξ
(
Gµνϕ

2 − 2ϕ∇µ∇νϕ+ 2gµνϕ∇σ∇σϕ
)
.

Its trace
Tµ

µ = (6ξ − 1)
(
(∇µϕ)(∇µϕ) + ϕ∇µ∇µϕ

)
−m2ϕ2 ,

Tµ
µ = 0 only for a massless, conformally coupled field

...
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Setup of cosmological solutions

Three equations:

G00 + Λg00 = κT00 Energy equation

−R + 4Λ = κTµ
µ Trace equation(

−∇σ∇σ +m2 + ξR
)
ϕ = 0 Field equation

...
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Setup of cosmological solutions

Three equations:

0 = ϕ̇2 + 12ξ ȧ
a
ϕϕ̇+m2ϕ2 + 6ξ ȧ2

a2
ϕ2 − 6 ȧ2

a2
+ 2Λ

Energy equation

0 = 6
(
1 + ξ(6ξ − 1)ϕ2

) (
ä
a
+ ȧ2

a2

)
− 4Λ + (1− 6ξ)ϕ̇2 + (6ξ − 2)m2ϕ2

Trace equation

0 = ϕ̈+ 3 ȧ
a
ϕ̇+m2ϕ+ 6ξ

(
ä
a
+ ȧ2

a2

)
ϕ

Field equation
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Setup of cosmological solutions

Trace and field equation:

ä = − ȧ2

a
+

a

6

(
4Λ + (2− 6ξ)m2ϕ2 + (6ξ − 1)ϕ̇2

1 + ξ(6ξ − 1)ϕ2

)
ϕ̈ = −3

ȧ

a
ϕ̇− ϕ

(
4Λξ +m2 +m2ξϕ2 + ξ(6ξ − 1)ϕ̇2

1 + ξ(6ξ − 1)ϕ2

)

Critical value of ϕ
1 + ξ(6ξ − 1)ϕ2

crit(ξ) = 0

...



12/23

Introduction and motivation The model Early and late time behavior Conclusions

Setup of cosmological solutions

Trace and field equation:
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Framework of constraints

ä = − ȧ2

a
+

a

6

(
4Λ + (2− 6ξ)m2ϕ2 + (6ξ − 1)ϕ̇2

1 + ξ(6ξ − 1)ϕ2

)
ϕ̈ = −3

ȧ

a
ϕ̇− ϕ

(
4Λξ +m2 +m2ξϕ2 + ξ(6ξ − 1)ϕ̇2

1 + ξ(6ξ − 1)ϕ2

)
Two second order ODEs, four initial conditions: a(0), ȧ(0), ϕ(0) and ϕ̇(0)

a(0) = 1 (by convention), ȧ(0) = H0 (observations)

Problem
We don’t know the initial values for ϕ(0) and ϕ̇(0).

Idea
Use the energy equation as one constraint and the value of q0 = −ä(0)/ȧ(0)2 as another. We have
qΛCDM = −0.538.

...
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Constraints from the energy equation

We consider solutions to the energy equation which are conic sections in (ϕ, ϕ̇,H): 0 = f (ϕ, ϕ̇,H)
For 0 < ξ < 1/6: ellipse

−ϕcrit −2
√
3 0 2

√
3 ϕcrit

0

20

40

1

2

5

10

2
0

5
0

ϕ

ϕ̇

0
ϕcrit(ξ)

−ϕcrit(ξ)

0
-8

8

-8

0

8

H

ϕ
ϕ̇

Λ = m = 1 and ξ = 1/12
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Constraints from a prescribed initial deceleration parameter

Parameter space (Λ,m, ξ) with a fixed q0:

1. No solutions (no real values of ϕ(0) and ϕ̇(0))

2. Two solutions (one cosmology)

3. Four solutions (two inequivalent cosmologies)

0 1
6
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10−1

1

101

102

ξ

m

Λ = 0, q0 = qΛCDM

0 1
6

10−1

1

101

102
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ξ

Λ

m = 0, q0 = qΛCDM

0 1
6

-1

0

1

102

qΛCDM

ξ

q0

Λ = 2, m = 0

...



15/23

Introduction and motivation The model Early and late time behavior Conclusions

Constraints from a prescribed initial deceleration parameter

Parameter space (Λ,m, ξ) with a fixed q0:

1. No solutions (no real values of ϕ(0) and ϕ̇(0))

2. Two solutions (one cosmology)

3. Four solutions (two inequivalent cosmologies)

0 1
6

10−2

10−1

1

101

102

ξ

m

Λ = 0, q0 = qΛCDM

0 1
6

10−1

1

101

102
102

ξ

Λ

m = 0, q0 = qΛCDM

0 1
6

-1

0

1

102

qΛCDM

ξ

q0

Λ = 2, m = 0

...



16/23

Introduction and motivation The model Early and late time behavior Conclusions

Early and late time behavior
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Types of singularities

Big Bang singularity

Let M = (ts,T )× R3 be a flat FLRW spacetime defined by the scale factor a : (ts,T ) → (0,∞) and
let γ ∈ R. M is said to have a γ-type Big Bang singularity at t = ts if

a(t) → 0 , ȧ(t) → ∞ and Γ[ a ](t) → γ

as t → ts.

Small Bang singularity

Let M = (ts,T )× R3 be a flat FLRW spacetime defined by the scale factor a : (ts,T ) → (aSB,∞). M
is said to have a Small Bang singularity in t = ts if

a(t) → aSB and ȧ(t) → ∞

as t → ∞, for some aSB > 0.

...
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γ-type solutions
For ξ > 1/6: a(t) → 0 and Γ[a](t) → γ as t → ts.
Three types of early time behavior:

▶ Type I: The pure radiation expansion (Big Bang singularity)

▶ Type II: The γ-type Big Bang singularity

▶ Type III: The scale factor asymptotically approaches zero.

Type II Type III
Λ = m = 0, ξ = 1

4
and q0 = 0.9

...
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Inflation

Definition
When a → 0 we have q[a] → −1

(a) q(±) in dependency of ξ (b) solutions with ξ = 3
16 , m = 0.2, Λ = 0.001, a(0) = ȧ(0) = H = 1

and q0 = 0.9 in different time scales

1
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3
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1
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1
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1
2
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q(−)(ξ)

ξ
-2 0 2
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1
q[ a ](t)
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0

1
a(t)

0 50 100
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0

1
q[ a ](t)

t

0

20

40 a(t)

m = 0.2 and Λ = 0.001

▶ Distinguished value of ξ = 3/16

▶ Inflationary period without other assumptions
(e.g. slow roll conditions)

▶ Further numerical study of this period to
determine if it lasts long enough to solve the
cosmological problems or generate density
fluctuations

...
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Small Bang solutions
Small Bang solutions are generic for 0 < ξ < 1/6
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Late times evolution

Numerical evidence
For all solutions with ξ ≥ 0 and Λ > 0 we observed a de Sitter late-time expansion with q[ a ](t) → −1
and H[ a ](t) → Hvac(Λ) as t → ∞

−1018 −5 · 1017 0
0

1

2

a(t)

t in s

10−18

10−17

Hvac(Λ)

H[ a ](t) in 1
s

−1018 −5 · 1017 0

−1

0

1

2

q[ a ](t)

t in s
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Conclusions

▶ We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and
coupling to curvature

▶ In a new approach to classical cosmology we showed the allowed range of parameters to have real
solutions

▶ At early times we observed Big Bangs, Small Bangs and an early inflationary period for different
values of the coupling constant

▶ At late times all solutions with positive cosmological constant approach a de Sitter universe
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