A new approach in classical Klein-Gordon cosmology

Eleni-Alexandra Kontou Common trends in non-Hermitian Physics 26 March 2025

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

Outline

Introduction and motivation

The model

Early and late time behavior

Conclusions

Based on: 2408.16549 Work with Nicolai Rothe

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

Introduction and motivation

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

The semiclassical Einstein equation

$$G_{\mu
u} + \Lambda g_{\mu
u} = \kappa \langle T^{\mathsf{ren}}_{\mu
u}
angle_{\omega}$$
.

Introduction and motivation The model Early and late time behavior	Conclusions
0000 00000000 000000	00

The semiclassical Einstein equation

$$\mathcal{G}_{\mu
u} + \Lambda \mathcal{g}_{\mu
u} = \kappa \langle T^{\mathsf{ren}}_{\mu
u}
angle_{\omega} \, .$$

Derivations of solutions:

- Cosmological spacetimes [Gottschalk, Siemssen, 2018] [Meda, Pinamonti, Siemssen, 2020]
- Einstein's static universe [Sanders, 2021]
- Black hole spacetimes: no solutions, progress on the renormalization of the quantized stress-energy tensor [Taylor, Breen, Ottewill, 2021] (and others...)

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

In the moment approach [Gottschalk, Siemssen, 2018]

$$\langle T_{\mu
u}^{
m ren}
angle_{\omega} = \langle T_{\mu
u}
angle_{\omega_1} + \langle T_{\mu
u}
angle_{\omega_2^{
m reg}}^{
m ren} + \Theta_{\mu
u}^{
m Had} + \Theta_{\mu
u}^{
m ta} + \Theta_{\mu
u}^{
m ren}(c)$$

- $\langle T_{\mu\nu} \rangle_{\omega_1}$, $\langle T_{\mu\nu} \rangle_{\omega_2^{reg}}$: contributions of the one-point function and of the regularized two-point function
- ► $\Theta_{\mu\nu}^{\text{Had}}$, $\Theta_{\mu\nu}^{\text{ta}}$, $\Theta_{\mu\nu}^{\text{ren}}(c)$: contributions of the Hadamard condition on the two-point function, of the trace anomaly and of the renormalization freedom, respectively.

Introduction and motivation	The model	Early and late time behavior	Conclusions
000	00000000	000000	00

▶ The contributions of the one-point functions can be modelled as a classical Klein-Gordon field

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

- > The contributions of the one-point functions can be modelled as a classical Klein-Gordon field
- A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from the literature

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

- ▶ The contributions of the one-point functions can be modelled as a classical Klein-Gordon field
- A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from the literature
- A rich parameter space with different kinds of solutions

Introduction and motivation	The model	Early and late time behavior	Conclusions
000	00000000	000000	00

- ▶ The contributions of the one-point functions can be modelled as a classical Klein-Gordon field
- A full treatment of the classical Klein-Gordon field in cosmological spacetimes was missing from the literature
- A rich parameter space with different kinds of solutions

How do these solutions affect the full semiclassical system?

0000 0000000 000000 00	usions

ntroduction	and	motivation	
0000			

Early and late time behavior

FLRW spacetimes

$$g:=-dt^2+a(t)^2g_{\mathbb{R}^3}$$

Early and late time behavior

Conclusions 00

FLRW spacetimes

$$g:=-dt^2+a(t)^2g_{\mathbb{R}^3}$$

The Ricci scalar

$$R[a] = 6\left(rac{\ddot{a}}{a} + rac{\dot{a}^2}{a^2}
ight)$$

The Hubble parameter and the decceleration parameter

$$H[a]: I_t o \mathbb{R}, \ t \mapsto rac{\dot{a}(t)}{a(t)}, \quad q[a]: I_t o \overline{\mathbb{R}}, \ t \mapsto -rac{a(t)\ddot{a}(t)}{\dot{a}(t)^2}$$

Any matter that solves the Einstein equation in FLRW spacetimes and γ -type solutions

$$(T^{\mu}{}_{\nu}) = \operatorname{diag}(-\varrho, \rho, \rho, \rho), \qquad \Gamma[a] = \gamma := \frac{\rho}{\varrho}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ ○ < ○ 8/23</p>

Early and late time behavio 000000 Conclusions 00

FLRW spacetimes

$$g:=-dt^2+a(t)^2g_{\mathbb{R}^3}$$

The Ricci scalar

$$R[a] = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)$$

The Hubble parameter and the decceleration parameter

$$H[a]: I_t o \mathbb{R}, \ t \mapsto rac{\dot{a}(t)}{a(t)}, \quad q[a]: I_t o \overline{\mathbb{R}}, \ t \mapsto -rac{a(t)\ddot{a}(t)}{\dot{a}(t)^2}$$

Any matter that solves the Einstein equation in FLRW spacetimes and γ -type solutions

$$(T^{\mu}{}_{\nu}) = \operatorname{diag}(-\varrho, \rho, \rho, \rho), \qquad \Gamma[a] = \gamma := \frac{\rho}{\varrho}$$

 $\gamma = -1$: Dark Energy, $\gamma = 0$: matter domination, $\gamma = \frac{1}{3}$: radiation domination

Early and late time behavior

Conclusions 00

FLRW spacetimes

$$g:=-dt^2+a(t)^2g_{\mathbb{R}^3}$$

The Ricci scalar

$$R[a] = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)$$

The Hubble parameter and the decceleration parameter

$$H[a]: I_t o \mathbb{R}, \ t \mapsto rac{\dot{a}(t)}{a(t)}, \quad q[a]: I_t o \overline{\mathbb{R}}, \ t \mapsto -rac{a(t)\ddot{a}(t)}{\dot{a}(t)^2}$$

Any matter that solves the Einstein equation in FLRW spacetimes and γ -type solutions

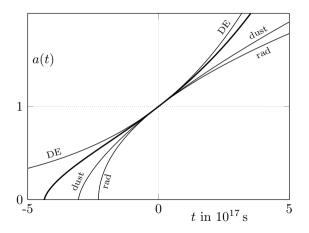
$$(T^{\mu}{}_{\nu}) = \operatorname{diag}(-\varrho, \rho, \rho, \rho), \qquad \Gamma[a] = \gamma := \frac{\rho}{\varrho}$$

 $\gamma=-1:$ Dark Energy, $\gamma=0:$ matter domination, $\gamma=\frac{1}{3}:$ radiation domination From [PLANCK, 2018]

$$\Omega_{\rm rad} = 5.38 \cdot 10^{-5} \,, \quad \Omega_{\rm dust} = 0.315 \,, \quad \Omega_{\rm DE} = 0.685 \quad {\rm and} \quad H_0 = 2.19 \cdot 10^{-18} \, {\rm s}^{-1} \,, \quad \Omega_{\rm dust} = 0.315 \,, \quad \Omega_{\rm DE} = 0.685 \,, \quad \Omega_{$$

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	0000000	000000	00

Constant EOS and the ΛCDM model



Introduction and motivation	The model	Early and late time behavior	Conclusions
0000		000000	00

The classical Klein-Gordon field

The action integral

$$S_{\mathrm{KG}} = rac{1}{2}\int d^4x \sqrt{-g} \Big(-(
abla_\mu \phi)(
abla^\mu \phi) + \xi R \phi^2 + m^2 \phi^2\Big)\,,$$

 $m \ge 0$: the mass of the field, $\xi \in \mathbb{R}$: a dimensionless coupling constant, $\xi_{cc} = \frac{1}{6}$: conformal coupling, $\xi_{mc} = 0$: minimal coupling

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000		000000	00

The classical Klein-Gordon field

The action integral

$$S_{
m KG}=rac{1}{2}\int d^4x\sqrt{-g}\Big(-(
abla_\mu\phi)(
abla^\mu\phi)+\xi R\phi^2+m^2\phi^2\Big)\,,$$

 $m \ge 0$: the mass of the field, $\xi \in \mathbb{R}$: a dimensionless coupling constant, $\xi_{cc} = \frac{1}{6}$: conformal coupling, $\xi_{mc} = 0$: minimal coupling The Klein-Gordon equation

$$\left(-
abla^{\sigma}
abla_{\sigma}+m^{2}+\xi R
ight)\phi=0$$

The stress-energy tensor

$$egin{aligned} T_{\mu
u} &= (1-2\xi)(
abla_\mu\phi)(
abla_
u\phi) - rac{1}{2}(1-4\xi)g_{\mu
u}(
abla^\sigma\phi)(
abla_\sigma\phi) - rac{1}{2}g_{\mu
u}m^2\phi^2 \ &+\xiig(G_{\mu
u}\phi^2 - 2\phi
abla_\mu
abla_
u\phi + 2g_{\mu
u}\phi
abla^\sigma
abla_\sigma\phiig)\,. \end{aligned}$$

Its trace

$${T^{\mu}}_{\mu}=(6\xi-1)ig((
abla^{\mu}\phi)(
abla_{\mu}\phi)+\phi
abla^{\mu}
abla_{\mu}\phiig)-m^{2}\phi^{2}\,,$$

 ${\cal T}^{\mu}{}_{\mu}=$ 0 only for a massless, conformally coupled field

◆□▶ < @ ▶ < E ▶ < E ▶ ○ 2 の Q ○ 10/23</p>

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

Three equations:

$$\begin{split} G_{00} + \Lambda g_{00} &= \kappa T_{00} & \text{Energy equation} \\ -R + 4\Lambda &= \kappa T^{\mu}{}_{\mu} & \text{Trace equation} \\ \left(-\nabla^{\sigma} \nabla_{\sigma} + m^2 + \xi R \right) \phi &= 0 & \text{Field equation} \end{split}$$

<ロト<(日)、<日)、<日)、<日)、<日)、<日)、<日)、<1/>(1/23)

Three equations:

$$\begin{split} 0 &= \dot{\phi}^2 + 12\xi \frac{\dot{a}}{a} \phi \dot{\phi} + m^2 \phi^2 + 6\xi \frac{\dot{a}^2}{a^2} \phi^2 - 6 \frac{\dot{a}^2}{a^2} + 2\Lambda \\ &\text{Energy equation} \\ 0 &= 6 \left(1 + \xi (6\xi - 1) \phi^2 \right) \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} \right) - 4\Lambda + (1 - 6\xi) \dot{\phi}^2 + (6\xi - 2) m^2 \phi^2 \\ &\text{Trace equation} \\ 0 &= \ddot{\phi} + 3 \frac{\dot{a}}{a} \dot{\phi} + m^2 \phi + 6\xi \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} \right) \phi \\ &\text{Field equation} \end{split}$$

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	000000000	000000	00

Trace and field equation:

$$\ddot{a} = -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

$$\ddot{\phi} = -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 12/23

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	000000000	000000	00

Trace and field equation:

$$\begin{array}{lll} \ddot{a} & = & -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right) \\ \ddot{\phi} & = & -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right) \end{array}$$

Critical value of ϕ

$$1+\xi(6\xi-1)\phi_{ ext{crit}}^2(\xi)=0$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 12/23

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	○○○○○○●○○	000000	00

$$\ddot{a} = -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

$$\ddot{\phi} = -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

Two second order ODEs, four initial conditions: $a(0), \dot{a}(0), \phi(0)$ and $\dot{\phi}(0)$

Introduction and motivation	The model	Early and late time behavior 000000	Conclusions 00

$$\ddot{a} = -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

$$\ddot{\phi} = -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

Two second order ODEs, four initial conditions: a(0), $\dot{a}(0)$, $\phi(0)$ and $\dot{\phi}(0)$ a(0) = 1 (by convention), $\dot{a}(0) = H_0$ (observations)

Introduction and motivation	The model	Early and late time behavior 000000	Conclusions 00

$$\ddot{a} = -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

$$\ddot{\phi} = -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right)$$

Two second order ODEs, four initial conditions: a(0), $\dot{a}(0)$, $\phi(0)$ and $\dot{\phi}(0)$ a(0) = 1 (by convention), $\dot{a}(0) = H_0$ (observations)

Problem

We don't know the initial values for $\phi(0)$ and $\dot{\phi}(0)$.

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	000000●00	000000	00

$$\begin{array}{lll} \ddot{a} & = & -\frac{\dot{a}^2}{a} + \frac{a}{6} \left(\frac{4\Lambda + (2 - 6\xi)m^2\phi^2 + (6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right) \\ \ddot{\phi} & = & -3\frac{\dot{a}}{a}\dot{\phi} - \phi \left(\frac{4\Lambda\xi + m^2 + m^2\xi\phi^2 + \xi(6\xi - 1)\dot{\phi}^2}{1 + \xi(6\xi - 1)\phi^2} \right) \end{array}$$

Two second order ODEs, four initial conditions: a(0), $\dot{a}(0)$, $\phi(0)$ and $\dot{\phi}(0)$ a(0) = 1 (by convention), $\dot{a}(0) = H_0$ (observations)

Problem

We don't know the initial values for $\phi(0)$ and $\dot{\phi}(0)$.

Idea

Use the energy equation as one constraint and the value of $q_0 = -\ddot{a}(0)/\dot{a}(0)^2$ as another. We have $q_{\Lambda CDM} = -0.538$.

Introduction and motivation	The model	Early and late time behavior	Conclusions
	○○○○○○●○	000000	00

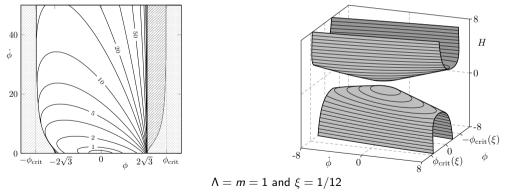
Constraints from the energy equation

We consider solutions to the energy equation which are conic sections in $(\phi, \dot{\phi}, H)$: $0 = f(\phi, \dot{\phi}, H)$ For $0 < \xi < 1/6$: ellipse

Introduction and motivation	The model	Early and late time behavior	Conclusions
	○○○○○○○●○	000000	00

Constraints from the energy equation

We consider solutions to the energy equation which are conic sections in $(\phi, \dot{\phi}, H)$: $0 = f(\phi, \dot{\phi}, H)$ For $0 < \xi < 1/6$: ellipse



<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 14/23

Introduction and motivation The model Early and late time behavior 00000 000000000 0000000	Conclusions OO

Constraints from a prescribed initial deceleration parameter

Parameter space (Λ, m, ξ) with a fixed q_0 :

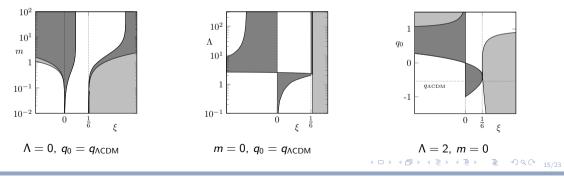
- 1. No solutions (no real values of $\phi(0)$ and $\dot{\phi}(0)$)
- 2. Two solutions (one cosmology)
- 3. Four solutions (two inequivalent cosmologies)

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

Constraints from a prescribed initial deceleration parameter

Parameter space (Λ, m, ξ) with a fixed q_0 :

- 1. No solutions (no real values of $\phi(0)$ and $\dot{\phi}(0)$)
- 2. Two solutions (one cosmology)
- 3. Four solutions (two inequivalent cosmologies)



Introduction and motivation	The model 00000000	Early and late time behavior	Conclusions 00

Early and late time behavior

Introduction and motivation	The model	Early and late time behavior	Conclusions
	000000000	○●○○○○	00

Types of singularities

Big Bang singularity

Let $M = (t^s, T) \times \mathbb{R}^3$ be a flat FLRW spacetime defined by the scale factor $a: (t^s, T) \to (0, \infty)$ and let $\gamma \in \mathbb{R}$. *M* is said to have a γ -type Big Bang singularity at $t = t^s$ if

 $a(t)
ightarrow 0, \quad \dot{a}(t)
ightarrow \infty \quad \text{ and } \quad \Gamma[a](t)
ightarrow \gamma$

as $t
ightarrow t^{s}$.

Introduction and motivation	The model	Early and late time behavior	Conclusions
	000000000	○●○○○○	00

Types of singularities

Big Bang singularity

Let $M = (t^s, T) \times \mathbb{R}^3$ be a flat FLRW spacetime defined by the scale factor $a: (t^s, T) \to (0, \infty)$ and let $\gamma \in \mathbb{R}$. *M* is said to have a γ -type Big Bang singularity at $t = t^s$ if

 $a(t)
ightarrow 0, \quad \dot{a}(t)
ightarrow \infty \quad \text{ and } \quad \Gamma[a](t)
ightarrow \gamma$

as $t
ightarrow t^{s}$.

Small Bang singularity

Let $M = (t^s, T) \times \mathbb{R}^3$ be a flat FLRW spacetime defined by the scale factor $a : (t^s, T) \to (a_{SB}, \infty)$. *M* is said to have a Small Bang singularity in $t = t^s$ if

 $a(t)
ightarrow a_{
m SB}$ and $\dot{a}(t)
ightarrow \infty$

as $t \to \infty$, for some $a_{\text{SB}} > 0$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

γ -type solutions

For $\xi > 1/6$: $a(t) \to 0$ and $\Gamma[a](t) \to \gamma$ as $t \to t^s$. Three types of early time behavior:

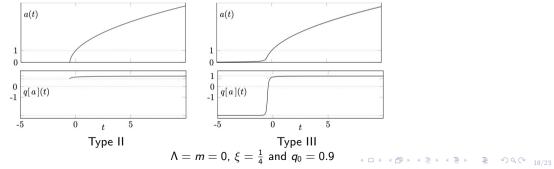
- Type I: The pure radiation expansion (Big Bang singularity)
- **•** Type II: The γ -type Big Bang singularity
- ► Type III: The scale factor asymptotically approaches zero.

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	00000	00

γ -type solutions

For $\xi > 1/6$: $a(t) \to 0$ and $\Gamma[a](t) \to \gamma$ as $t \to t^s$. Three types of early time behavior:

- Type I: The pure radiation expansion (Big Bang singularity)
- Type II: The γ-type Big Bang singularity
- ▶ Type III: The scale factor asymptotically approaches zero.



Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	00

Inflation

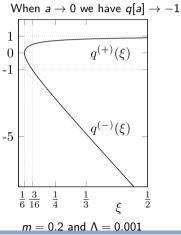
Definition

When a
ightarrow 0 we have q[a]
ightarrow -1

Early and late time behavior

Inflation

Definition



- Distinguished value of $\xi = 3/16$
- Inflationary period without other assumptions (e.g. slow roll conditions)
- Further numerical study of this period to determine if it lasts long enough to solve the cosmological problems or generate density fluctuations

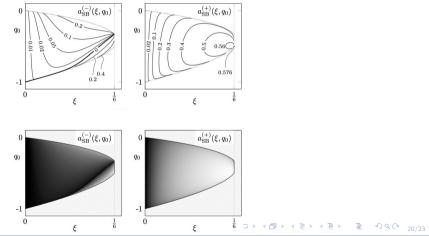
<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ = うへで 19/23

Early and late time behavior

Conclusions 00

Small Bang solutions

Small Bang solutions are generic for $0 < \xi < 1/6$

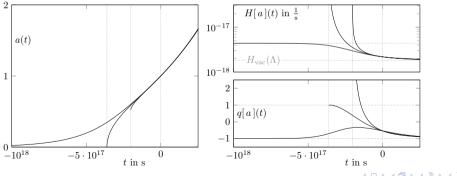


Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	○○○○○●	

Late times evolution

Numerical evidence

For all solutions with $\xi \ge 0$ and $\Lambda > 0$ we observed a de Sitter late-time expansion with $q[a](t) \rightarrow -1$ and $H[a](t) \rightarrow H_{vac}(\Lambda)$ as $t \rightarrow \infty$



Introduction and motivation	The model	Early and late time behavior 000000	Conclusions • O

Introduction and motivation	The model	Early and late time behavior	Conclusions
0000	00000000	000000	0.

We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and coupling to curvature

- We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and coupling to curvature
- In a new approach to classical cosmology we showed the allowed range of parameters to have real solutions

- We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and coupling to curvature
- In a new approach to classical cosmology we showed the allowed range of parameters to have real solutions
- At early times we observed Big Bangs, Small Bangs and an early inflationary period for different values of the coupling constant

- We analyzed the classical Klein-Gordon cosmology varying the mass, cosmological constant and coupling to curvature
- In a new approach to classical cosmology we showed the allowed range of parameters to have real solutions
- At early times we observed Big Bangs, Small Bangs and an early inflationary period for different values of the coupling constant
- ▶ At late times all solutions with positive cosmological constant approach a de Sitter universe