Materials Science Meets Dark Matter Detection: TOORAD! David J. E. Marsh KCL, Oct (2020)

Based on DJEM et al PRL (2018) and forthcoming

GEORG-AUGUST-UNIVERSITÄT Göttingen

Unterstützt von / Supported by

Stiftung/Foundation

Schematics of experimental concept

TOORAD = TOpOlogical Resonant Axion Detection

AXION DARK MATTER

A neat theory for the "glue" of the Universe...

Dark Matter on Earth

Milky Way Rotation Curve, Sofue (2012)

Axions vs WIMPs

Two historical dark matter theories proposed in 70's/80's.

DMTools

Axion Dark Matter

For the purposes of this talk, all you need to know is that axions can be modeled as an oscillating classical field:

$$\phi = \phi_0 \cos \omega_a t$$

$$\omega_a = m_a + \frac{1}{2} m_a v^2 = m_a [1 + \mathcal{O}(10^{-6})]$$

$$\nu_a \approx 1 \,\mathrm{GHz} \times \left(\frac{m_a}{6 \,\mu\mathrm{eV}}\right)$$

Local DM density given as a harmonic oscillator:

$$\rho_{\rm DM} = \frac{1}{2} m_a^2 \phi_0^2$$

 \rightarrow if we know m_a we know field amplitude & frequency

Galaxy formation e.g. DJEM (2016)

Veltmaat et al (2018)

60 i__

> "Black Hole Superradiance" e.g. DJEM & Stott (2018)

SN1987A Neutrino Burst e.g. Chang et al (2018)

What is the Axion Mass?

Gorghetto et al (2018); Hiramatsu et al (2012), and many, many more!

Spontaneous symmetry breaking \rightarrow primoridal oscillations of axion field.

Cosmic DM density is a function of axion mass.

Challenging, but *solvable* computational problem.

This scenario seems to favour meV → THz

"Defects" form and decay, emitting axions (not shown)

Axions and Maxwell's Equations

Our last ingredient: how do axions interact with us? Answer: via classical electromagnetism!

$$\nabla \cdot \mathbf{E} = \rho_f$$
$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = \mathbf{J}_f$$

Axion field ϕ acts as an oscillating source for E parallel to B \rightarrow amplify with resonance. Amplitude of source fixed by $\rho_{\rm DM}$ and coupling constant, g.

$$\mathcal{L} = \frac{\alpha}{2\pi f_a} c_\gamma \ \phi \tilde{F}^{\mu\nu} F_{\mu\nu} \qquad m_a = 5 \ \mathrm{meV}\left(\frac{10^9 \ \mathrm{GeV}}{f_a}\right)$$

 \rightarrow If we know the axion mass, we know what resonator to make & strength of induced fields

How to Detect Axions

ADMX Axion "Haloscope" Sikivie (1983) Braine et al (2020) Field Cancellation Coil SQUID Amplifier Refrigeration Cavity Main Magnet

ADMX Axion "Haloscope"

Microwave cavity.

Resonance when axion frequency ~ cavity natural frequency.

Large volume \rightarrow works for frequencies ~ GHz

Production of radio waves inside the cavity. Power $\sim 10^{-22}$ W (!), detect with e.g. JPA.

THz Detection Challenge

Fixed by MW rotation curve. Predicted from theory. Experimental parameters.

$$P = \rho_{\rm DM} \frac{g^2}{m_a} B^2 \ Q \ V_{\rm eff}$$

Reference THz cavity has very low power $\rightarrow 10^{-29}$ W for the axion. Tune $\delta L \sim$ nanometre.

Magnetic resonance overcomes these problems! V is independent of ω , and tuning can happen on B~ μ T.

Materials Science:

Antiferromagnetic resonance (AFMR) \rightarrow THz from "anisotropy field" ~ 10 meV. Topological insulator \rightarrow AFMR driven by axion-photon coupling (DJEM et al, 2018).

SOME CONDENSED MATTER THEORY

Nobody said this was going to be easy... enjoy the unity of physics!

Topological Insulators

e.g. Kane & Mele (2005)

Materials based on Bismuth (e.g. Bi₂Se₃, Bi₂Te₃), and Antimony (e.g. Sb₂Te₃)

Topological Insulators

e.g. Kane & Mele (2005) Fig: Wikipedia

Class of new materials with insulating bulk and conducting surface.

Surface Hall currents described by electromagnetic " Θ -term", with $\Theta=\pi$.

$\mathcal{L} = \Theta \mathbf{E} \cdot \mathbf{B}$

Static Θ (symmetry) \rightarrow only affect EM on surface. Note: E is parallel to B just like axion source!

Momentum

Antiferromagnetic "Magnons"

Figs: Joel Cramer and Wikiwand.com

> Anisotropy: $E=\mu H_A$

A-lattice B-lattice

External field \rightarrow spin precession \rightarrow "spin wave"

Easy axis

Antiferromagnetic "magnetization": $\Sigma_s = \langle M_A \rangle - \langle M_B \rangle$

Spins have magnetic fields→ interact via "exchange" with each other, and "anisotropy" to "easy axis" direction in crystal.

Antiferromagnetic "Magnons"

e.g. Haldane (1983), Hofmann (1998)

Mean field theory for Heisenberg model in crystal. Use Noether's theorem. Magnetic order breaks SO(3) and T \rightarrow goldstone bosons called magnons (spin waves). c.f.crystal structure breaks rotation symmetry \rightarrow goldstone bosons called phonons.

Terms in Lagrangian (and scattering amplitudes!) just like pions and axions:

$$\mathcal{L} = \frac{F_1^2}{2} (D_t n^i)^2 - \frac{F_2^2}{2} (D_x n^i)^2 + O_i n^i \quad \ \ \text{n live on coset space:} \\ \text{G/H} = \text{SO(3)/U(I)} = \text{S}^2$$

Oscillation frequency given by exchange (F1), anisotropy (O), applied (D) fields:

"Kittel shift"
$$\omega_{
m AFMR} = \mu H_0 + \sqrt{H_A(2H_E+H_A)} m_s$$
 Spin wave "mass"

"Gell-Mann-Oakes- $F^2 m_s^2 = L H_A$

(spontaneous) * (explicit) symmetry breaking

Spin wave "stiffness"

Dynamical axion field in topological magnetic insulators

Rundong Li¹, Jing Wang^{1,2}, Xiao-Liang Qi¹ and Shou-Cheng Zhang^{1*}

The longitudinal mode has the right properties to couple to E.B \rightarrow axion quasiparticle.

Key idea: use the axion quasiparticle to detect axion dark matter (DJEM et al, 2018)

Coupled Perturbations

$$\epsilon \ddot{E}_{z} + k^{2}E_{z} + \frac{\alpha}{\pi}B_{0}\ddot{\theta} = \begin{bmatrix} \frac{2B_{0}\sqrt{\rho_{\rm DM}}}{m_{a}}\cos m_{a}t \\ \frac{\beta}{m_{a}} + v_{s}^{2}k^{2}\theta + m_{s}^{2}\theta + \frac{\alpha}{4\pi^{2}F^{2}}B_{0} \cdot E_{z} \end{bmatrix} = 0$$
Applied field:

$$B = (0, 0, B_{0})$$

Axion dark matter drives the system at frequency given by axion mass.

Topological insulator E-B coupling mixes E and $\theta \rightarrow \underline{\text{effective photon mass}} \sim m_s \sim H_A \sim \underline{\text{meV}}$

Matrix equation \rightarrow diagonalise left hand side \rightarrow "polaritons" mix of E and θ .

$$\ddot{\phi}_{\pm} + \omega_{\pm}^2 \phi_{\pm} = J_{\pm} \cos m_a t$$

AXION DARK MATTER DETECTION

Axion quasiparticle materials are large volume, tunable, THz resonantors!

Polariton Dispersion Relation 4 ω_+ Tunable 3 ω_{-} $[meV]^{3}$ with strength of AQ applied B-3 Resonance field when: $\omega_{+} = \omega_{a}$ 0.51.01.5 $k/\sqrt{\epsilon} \, [\text{meV}]$

• Polaritons at material boundary convert into photons via dielectric boundary conditions.

K₁

- Resonance is independent of sample size → increase V.
- $V \sim 10 \text{ cm}^3 \rightarrow P \sim 10^{-23} \text{ W} = 0.1$ THz photon per second.

Fig: Millar et al (2016)

Schematics of experimental concept

TOORAD = TOpOlogical Resonant Axion Detection

Predicted Sensitivity to Axion DM

- Wide bandwidth THz SPD.
- Simplified loss model with $Q=10^2$ to 10^5 .
- Material Bi(Fe)₂Se₃.

Figs: MADMAX collaboration

"MADMAX" Dielectric Haloscope

Experiment to be built at DESY (Hamburg) in 5-10 years. Frequency 10-100 GHz.

Different technologies target different frequencies. Nature will decide who chose correctly.

RESONANCE WIDTH AND LOSSES

There's always a catch...

Dielectric Function and Conduction

Recall that conductivity, σ , leads to damping of the electric field by charge redistribution:

$$\epsilon \ddot{E} + \sigma \dot{E} + k^2 E + \frac{\alpha}{\pi} B_0 \ddot{\theta} = J \cos m_a t$$

Changing units: $\sigma = 0.6 \,\mathrm{meV}(\Omega \mathrm{cm}/
ho)$ high $ho \rightarrow$ high Q, but TIs not good insulators.

Cao & Wang (2013)

"Boost Factor" Resonance Width

In a finite dielectric, life isn't as simple as Q alone. Compute ''Fabry-Perot boost'', β .

Magnetic Losses

Lvov, Wave Turbulence (1994) Bayrackci et al (2013)

Thermal magnons can scatter off the ground state and destroy its coherence:

Scattering appears in the collision term in the Boltzmann equation \rightarrow coherence time.

$$\dot{n}_1 = -\int n_1 n_2 |\mathcal{M}|^2 \,\mathrm{d}\Phi = -n_1 \langle \sigma v n_2 \rangle = -\Gamma(T) n_1$$

Neutron scattering measurement of antiferromagnet MnF₂: $\Gamma(4K) \sim \mu eV \Rightarrow Q \sim 10^3$

FINDING THE AXION QUASIPARTICLE

The right antiferromagnetic topological insulator hasn't been found, yet...

Manganese Bismuth Telluride: Mn_xBi_yTe_z

New class of intrinsically magnetic TIs, hot topic in materials science. Hunt for dynamical axion is on!

(124) phase crystals supplied by UCLA. Wrong symmetry \rightarrow AFMR but no axion quasiparticle. \otimes Test case for characterisation \odot Doping with Sb increases resistivity \rightarrow reduce losses. Samples shipped from SUS-Tech \odot (225) axion quasiparticle candidate under production \odot

THz Spectroscopy @ INFN Padova

Polariton spectrum
 has a gap near spin
 wave mass, m_s.

Fig: Li et al (2010)

THz Spectroscopy @ INFN Padova

Fig: Li et al (2010)

c. Applied B mixes photon to polariton. There are no states allowed with gap frequencies. \rightarrow there can be no transmission for a source beam in the gap \rightarrow total reflectance.

Polariton Transmission (Theory)

- Identify axion-quasiparticle resonance and measure it's width.
- \rightarrow Discovery of the axion quasiparticle!
- Work with many materials to find best β and bandwidth.
- Scale up to large volumes
- Detect axion dark matter.

d=0.03 mm ,n=10.0, $v_z = 0$, $\Gamma_{\rho} = 0.03$ meV, $\Gamma_m = 0.001$ meV, $\Gamma_{\times} = 0.0$ 1.0 $B^{0} = 1 T$ $B^0 = 2 T$ $B^0 = 6 T$ $--\delta\theta=0$ 0.8 resonance gap 0.6 H_y 0.4 width 0.2 0.0 0.14 0.16 0.18 0.20 0.22 0.24 0.26 f [THz]

TOORAD COLLABORATION

M. Ali (MPI Halle), C. Braggio (INFN), F. Chadha-Day (Cambridge), N. Crescini (INFN), K.C. Fong (Harvard), E. Hardy (Liverpool), S. Hoof (Göttingen), M. Lawson (Stockholm), E. Lentz (Göttingen), D. J. E. Marsh (Göttingen), A. Millar (Stockholm), J. Schuette-Engel (Hamburg), A. Sekine (RIKEN), L. Smejkal (Mainz)

Schematics of experimental concept

>80 page paper to appear ~November

BACKUP SLIDES

Dark Matter in the Cosmos

Planck Collaboration

(measured to 1% precision)

NB: "modified gravity" cannot explain the acoustic features in the data.

Axion Quasiparticles in AF-TIs

Magnetic TI with broken symmetries \rightarrow Θ -term is dynamical.

Longitudinal magnons have quantum numbers to couple $\Theta \rightarrow$ dynamical $\delta \theta$ axion-like coupling to E.B

Single Photon Detection

Dicke radiometer eq. in THz. Standard quantum limit (SQL) noise T_Q~10K, is relatively large. SQL assumes measurement of amplitude & phase of a radio wave, and Hesinberg. $\Delta E \Delta t \geq \hbar \Rightarrow k_B T \geq \hbar \omega_a$

Measurement time τ ends up being many thousands of years for axion signal detection. Single photon detection (SPD) bypasses this by throwing out the phase information.

$$P \sim 10^{-23} \,\mathrm{W} \sim 10^{-4} \times 10^{-19} \,\mathrm{J \, s^{-1}} \sim 0.1 \,\mathrm{meV \, Hz}$$

every 10s

SPD is hard at low ~GHz frequencies, but becomes feasible in THz. Described by dark count, Γ_d , efficiency, ϵ . Taking $\epsilon \Gamma_d \sim 10^{-3}$ Hz <R=0.1 Hz \rightarrow integration time:

$${
m SNR}=\sqrt{2[(s+b)\ln(1+s/b)-3]}=3$$
 \Rightarrow $au\sim10\,{
m s}$ Sometimes there is a free lunck free lunck

arXiv.org > cond-mat > arXiv:1911.04403

Condensed Matter > Superconductivity

[Submitted on 11 Nov 2019]

Magic-angle bilayer graphene nano-calorimeters -- towards broadband, energy-resolving single photon detection

P. Seifert, X. Lu, P. Stepanov, J. R. Duran, J. N. Moore, K. C. Fong, A. Principi, D. K. Efetov

Because of the ultra-low photon energies in the mid-infrared and terahertz frequencies, in these bands photodetectors are notoriously underdeveloped, and broadband single photon detectors (SPDs) are non-existent. Advanced SPDs exploit thermal effects in nano-structured superconductors, and their performance is currently limited to the more energetic near-infrared photons due to their high electronic heat capacity. Here, we demonstrate a superconducting magic-angle twisted bilayer graphene (MAG) device that is capable of detecting single photons of ultra-low energies by utilizing its record-low heat capacity and sharp superconducting transition. We theoretically quantify its calorimetric photoresponse and estimate its detection limits. This device allows the detection of ultra-broad range single photons from the visible to sub-THz with response time around 4 ns and energy resolution better than 1 THz. These attributes position MAG as an excep-tional material for long-wavelength single photon sensing, which could revolutionize such disparate fields as quantum information processing and radio astronomy.

Example: AFMR by Transmission Little et al (2017)

We would like to do measurements of AFMR ω and Γ like this:

"DMRadio/ABRACADABRA"

Axion induces an effective current in a SQUID pickup loop. Broadband and resonant search. Abra-10cm prototype at MIT.

"A Broadband/ Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus", Kahn et al (2016)

ABRACADABRA-10cm Conceptual Design

Drawings by D. Winklehner

ABRACADABRA> ABRA

