# LOW-FREQUENCY GRAVITATIONAL WAVES WITH GAIA ASTROMETRY

THEORETICAL PARTICLE PHYSICS AND COSMOLOGY SEMINAR KING'S COLLEGE LONDON 28 OCTOBER 2020 AL

DEYAN MIHAYLOVALBERT EINSTEIN INSTITUTE - POTSDAM















GERRY GILMORE



ANTHONY LASENBY



Jonathan GAIR



CHRISTOPHER MOORE





GERRY GILMORE



ANTHONY LASENBY



Jonathan GAIR



CHRISTOPHER MOORE

### CONTENTS

**1.** ASTROMETRIC RESPONSE OF A GRAVITATIONAL WAVE

2. SENSITIVITY OF GAIA

- **3. BACKGROUND CORRELATIONS**
- 4. CONSTRAINING THE SPEED OF LIGHT
- 5. NEW DIRECTIONS

# ASTROMETRIC RESPONSE OF A GRAVITATIONAL WAVE

OBSERVER (EARTH) AND PHOTON SOURCE (STAR) ARE AT REST IN FLAT SPACE





OBSERVER (EARTH) AND PHOTON SOURCE (STAR) ARE AT REST IN FLAT SPACE

JOINED BY A NULL GEODESIC

$$rac{\mathrm{d}^2}{\mathrm{d}\lambda^2} \, x^\mu(\lambda) = 0, \quad p^\mu = rac{\mathrm{d}}{\mathrm{d}\lambda} \, x^\mu(\lambda) \equiv \mathrm{const.}$$



OBSERVER (EARTH) AND PHOTON SOURCE (STAR) ARE AT REST IN FLAT SPACE

JOINED BY A NULL GEODESIC

$$rac{\mathrm{d}^2}{\mathrm{d}\lambda^2} \, x^\mu(\lambda) = 0, \quad p^\mu = rac{\mathrm{d}}{\mathrm{d}\lambda} \, x^\mu(\lambda) \equiv \mathrm{const.}$$

THE OBSERVER MEASURES ASTROMETRIC POSITION AND FREQUENCY

 $n_{\hat{\imath}}, \quad \Omega$ 



$$\begin{split} h_{\mu\nu} \left( t, x^i \right) &= \Re \big\{ H_{\mu\nu} \exp \left( \mathrm{i} k_{\rho} x^{\rho} \right) \big\} \,, \\ k^{\rho} &= \omega \left( 1, -q^i \right) \end{split}$$





NOW CONSIDER PERTURBING THE FLAT SPACE-TIME WITH A GW  $h_{\mu\nu}(t, x^i) = \Re \{H_{\mu\nu} \exp(ik_\rho x^\rho)\},\$ 

 $egin{aligned} h_{\mu
u}(t,x^{i}) &= \Re \{ H_{\mu
u} \exp\left( \mathrm{i} k_{
ho} x^{
ho} 
ight) \} , \ k^{
ho} &= \omega\left( 1,-q^{i} 
ight) \end{aligned}$ 

WORLDLINES OF **OBSERVER** AND **SOURCE** ARE UNAFFECTED

PHOTON WORLDLINE IS A GEODESIC IN BOTH METRICS

 $x^{\mu}(\lambda) \mapsto x^{\mu}(\lambda) + \delta x^{\mu}(\lambda)$ 



Now CONSIDER PERTURBING THE FLAT SPACE-TIME WITH A GW

 $h_{\mu\nu}(t,x^{i}) = \Re \{ H_{\mu\nu} \exp(ik_{\rho}x^{\rho}) \},\$  $k^{\rho} = \omega (1,-q^{i})$ 

WORLDLINES OF **OBSERVER** AND **SOURCE** ARE UNAFFECTED

PHOTON WORLDLINE IS A GEODESIC IN BOTH METRICS

 $x^{\mu}(\lambda) \mapsto x^{\mu}(\lambda) + \delta x^{\mu}(\lambda)$ 

EVOLVES ACCORDING TO THE PARALLEL TRANSPORT EQUATION

$${{
m d}^2\over {
m d}\lambda^2}\,\delta x^\mu_{t_0}(\lambda)=-\Gamma^\mu_{
u
ho}\,p^
u p^
ho$$

INTEGRATE ALONG THE WORLDLINE OF THE PHOTON



**BOUNDARY CONDITIONS:** 

A. PHOTON PATH IS NULL

B. PHOTON PATH INTERSECTS SOURCE AND OBSERVER WORLDLINES

INTEGRATE ALONG THE WORLDLINE OF THE PHOTON



**BOUNDARY CONDITIONS:** 

A. PHOTON PATH IS NULL

B. PHOTON PATH INTERSECTS SOURCE AND OBSERVER WORLDLINES

PERTURBED ASTROMETRIC POSITION AND FREQUENCY

 $n_{\hat{\imath}} + \delta n_{\hat{\imath}}, \quad \Omega_{\rm obs}$ 

### REDSHIFT

$$z = \frac{n^{i}n^{j}}{2\left(1 - n_{k}q^{k}\right)} \left[h_{ij}(\text{OBS}) - h_{ij}(\text{SOURCE})\right]$$

### REDSHIFT

$$z = \frac{n^{i}n^{j}}{2\left(1 - n_{k}q^{k}\right)} \left[h_{ij}(\text{OBS}) - h_{ij}(\text{SOURCE})\right]$$



$$\begin{split} \delta n_{\hat{\imath}} = & \left[ \left( \left\{ 1 + \frac{\mathrm{i}(2 - \vec{q} \cdot \vec{n})}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} n_{\hat{\imath}} \right. \\ & - \left\{ 1 + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} q_{\hat{\imath}} \right) \frac{H_{jk} n^{j} n^{k}}{2(1 - \vec{q} \cdot \vec{n})} \\ & - \left\{ \frac{1}{2} + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} H_{\hat{\imath}j} n^{j} \right] \exp(-\mathrm{i}\omega t_{0}) \,. \end{split}$$

$$\begin{split} \delta n_{\hat{\imath}} = & \left[ \left( \left\{ 1 + \frac{\mathrm{i}(2 - \vec{q} \cdot \vec{n})}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} n_{\hat{\imath}} \right. \\ & - \left\{ 1 + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} q_{\hat{\imath}} \right) \frac{H_{jk} n^{j} n^{k}}{2(1 - \vec{q} \cdot \vec{n})} \\ & - \left\{ \frac{1}{2} + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} H_{\hat{\imath}j} n^{j} \right] \exp(-\mathrm{i}\omega t_{0}) \,. \end{split}$$

 $=\delta n_{\hat{\imath}}(h(\text{OBS}),h(\text{SOURCE}))$ 

$$\begin{split} \delta n_{\hat{\imath}} = & \left[ \left( \left\{ 1 + \frac{\mathrm{i}(2 - \vec{q} \cdot \vec{n})}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} n_{\hat{\imath}} \right. \\ & - \left\{ 1 + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} q_{\hat{\imath}} \right) \frac{H_{jk} n^{j} n^{k}}{2(1 - \vec{q} \cdot \vec{n})} \\ & - \left\{ \frac{1}{2} + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} H_{\hat{\imath}j} n^{j} \right] \exp\left(-\mathrm{i}\omega t_{0}\right). \end{split}$$

 $=\delta n_{\hat{\imath}}(h(\text{OBS}), h(\text{SOURCE}))$ 

#### IN THE DISTANT SOURCE LIMIT

$$\delta n_{\hat{\imath}} = \frac{n_{\hat{\imath}} - q_{\hat{\imath}}}{2(1 - \vec{q} \cdot \vec{n})} h_{\hat{\jmath}\hat{k}}(\text{OBS}) n^{\hat{\jmath}} n^{\hat{k}} - \frac{1}{2} h_{\hat{\imath}\hat{\jmath}}(\text{OBS}) n^{\hat{\jmath}} \,.$$



## EFFECT ON THE SKY

$$\begin{split} \delta n_{\hat{\imath}} = & \left[ \left( \left\{ 1 + \frac{\mathrm{i}(2 - \vec{q} \cdot \vec{n})}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} n_{\hat{\imath}} \right. \\ & \left. - \left\{ 1 + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} q_{\hat{\imath}} \right) \frac{H_{jk} n^{j} n^{k}}{2(1 - \vec{q} \cdot \vec{n})} \\ & \left. - \left\{ \frac{1}{2} + \frac{\mathrm{i}}{\omega \lambda_{\mathrm{S}} \Omega (1 - \vec{q} \cdot \vec{n})} \left[ 1 - \exp\left(-\mathrm{i}\omega \Omega \lambda_{\mathrm{S}} (1 - \vec{q} \cdot \vec{n})\right) \right] \right\} H_{\hat{\imath}j} n^{j} \right] \exp\left(-\mathrm{i}\omega t_{0}\right). \end{split}$$

 $=\delta n_{\hat{\imath}}\left(h(\text{OBS}),h(\text{SOURCE})
ight)$ 

#### IN THE DISTANT SOURCE LIMIT

$$\delta n_{\hat{\imath}} = \frac{n_{\hat{\imath}} - q_{\hat{\imath}}}{2(1 - \vec{q} \cdot \vec{n})} h_{\hat{\jmath}\hat{k}}(\text{OBS}) n^{\hat{\jmath}} n^{\hat{k}} - \frac{1}{2} h_{\hat{\imath}\hat{\jmath}}(\text{OBS}) n^{\hat{\jmath}} \,.$$



NORTHERN HEMISPHERE

SOUTHERN HEMISPHERE





ENHANCED 10<sup>13</sup> TIMES





## IS THIS EFFECT DETECTABLE?



### ESA MISSION FOR ASTROMETRY IN THE MILKY WAY

**OBJECTIVES:** 

MAP ~109 OBJECTS ~70 TIMES EACH

ASTROMETRIC ACCURACY ~10 MICRO ARC SECONDS "A MICRO ARC SECOND IS ABOUT THE SIZE OF A PERIOD AT THE END OF A SENTENCE IN THE APOLLO MISSION MANUALS LEFT ON THE MOON AS SEEN FROM EARTH."

### SENSITIVITY TO INDIVIDUAL EVENTS

~100 MEASUREMENTS OF EACH OBJECT

MISSION DURATION 5-10 YEARS

SENSITIVE IN THE RANGE 10<sup>-8</sup> - 3×10<sup>-7</sup> Hz BLACK HOLE BINARIES IN THE EARLY PN INSPIRAL, 10<sup>8</sup> - 10<sup>10</sup> SOLAR MASSES

### CAVEATS

#### **ASTROMETRIC MEASUREMENTS ARE SPREAD OVER 5 YEARS**



NOISE + LARGE SCALE SYSTEMATICS AT THIS LEVEL

GAIA HAS A DEADLINE OF 5 YEARS, PTA SURVEYS CONTINUALLY IMPROVE

### DETECTING GWS WITH GAIA

# IT IS ONLY BEING SERIOUSLY CONSIDERED NOW, IN THE GAIA ERA

### DETECTING GWS WITH GAIA

# IT IS ONLY BEING SERIOUSLY CONSIDERED NOW, IN THE GAIA ERA

BIGGEST CHALLENGE IS THE SIZE OF THE DATA SET
## DETECTING GWS WITH GAIA

# IT IS ONLY BEING SERIOUSLY CONSIDERED NOW, IN THE GAIA ERA

#### BIGGEST CHALLENGE IS THE SIZE OF THE DATA SET

#### DATA RELEASES 1 & 2 DO NOT FEATURE INDIVIDUAL ASTROMETRIC MEASUREMENTS, WORKING WITH SIMULATED DATA

### **COMPUTATIONAL PIPELINE**

SIMULATED DATA

### **COMPUTATIONAL PIPELINE**

SIMULATED DATA

PROPER + NOISE + GW SIGNAL MOTION

### **COMPUTATIONAL PIPELINE**

SIMULATED DATA

NOISE + GW SIGNAL

**PIPELINE FOR INDIVIDUAL DETECTIONS:** 

BAYESIAN INFERENCE ON THE PARAMETER GRID



1010 SOLAR MASS BINARY 20 MPC AWAY

## FREQUENCY SENSITIVITY OF GAIA





## DIRECTIONAL SENSITIVITY OF GAIA





## 30% VARIATION ACROSS THE SKY

## CORRELATIONS OF A STOCHASTIC BACKGROUND

$$\delta n_{\hat{\imath}} = \frac{n_{\hat{\imath}} - q_{\hat{\imath}}}{2(1 - \vec{q} \cdot \vec{n})} h_{\hat{\jmath}\hat{k}}(\text{OBS}) n^{\hat{\jmath}} n^{\hat{k}} - \frac{1}{2} h_{\hat{\imath}\hat{\jmath}}(\text{OBS}) n^{\hat{\jmath}}.$$

#### INVESTIGATE CORRELATIONS OF STARS ON THE SKY

$$\Gamma^{\scriptscriptstyle P}_{ij}(\Theta) \propto \int_{S^2} \mathrm{d}\Omega_{\mathbf{q}} \, \delta n_i(n_k,t) \, \delta m_j(m_\ell,t),$$



#### INVESTIGATE CORRELATIONS OF STARS ON THE SKY

 $\Gamma_{ij}^{\scriptscriptstyle P}(\Theta) \propto \int_{S^2} \mathrm{d}\Omega_{\mathbf{q}} \, \delta n_i(n_k,t) \, \delta m_j(m_\ell,t),$ 



 $\mathbf{\hat{u}}_r$  $\mathbf{\hat{u}}_{ heta}$ 

**GR** MODES



CF. BOOK AND FLANAGAN, 2001

#### **GR** MODES



CF. BOOK AND FLANAGAN, 2001









**VECTORIAL MODES** 

+

#### SCALAR LONGITUDINAL MODE



ARXIV:1804.00660

## **REDSHIFT-ASTROMETRY CORRECTION**

#### **GR** MODES



CF. BOOK AND FLANAGAN, 2001



#### **GR** MODES



ANGULAR SEPARATION  $\Theta$ 

## MASSIVE GRAVITON CORRECTION

#### **GR** MODES



CF. BOOK AND FLANAGAN, 2001

**GR** MODES WITH MASSIVE GRAVITON CORRECTIONS



ANGULAR SEPARATION  $\Theta$ 

## CONCLUSIONS

- 1. GWS INDUCE PERIODIC PERTURBATIONS IN THE ASTROMETRIC MEASUREMENTS OF STARS
- 2. GAIA IS THE IDEAL TOOL TO STUDY THIS EFFECT
- **3.** WE HAVE DEVELOPED A DATA ANALYSIS PIPELINE
- 5. DATA CAN BE COMPRESSES WITH LITTLE LOSS
- 6. FURTHER DATA RELEASES WILL ALLOW GW SEARCHES TO BE PERFORMED.

## FURTHER WORK



### **FURTHER WORK**



## FURTHER WORK

- 1. SYSTEMATICS IN GAIA DR4?
- 2. PAIRWISE VELOCITIES ESTIMATION
- 3. ANISOTROPY TESTS
- 4. YOUR IDEAS?

## ACKNOWLEDGEMENTS







+ FIRST BINARY PULSAR DISCOVERED IN 1974

PERIOD DECAY CONSISTENT
WITH GR

+ NOBEL PRIZE IN 1994

## COMPRESSING THE GAIA DATASETS

#### 2 x $10^9$ stars times $10^2$ measurements = a lot of data

**GEODESIC DOME**








